

3D PERCEPTION WITH SPARSE TENSORS

Chris Choy, Nvidia Research

SPARSE TENSOR

Sparse Matrix

- Sparse Tensor: N-dimensional extension
 - 2x2 matrix
 - 2x2x2 tensor
- COOrdinate (COO) Representation

$$\mathcal{T}[\mathbf{x}_i] = \begin{cases} \mathbf{f}_i & \text{if } \mathbf{x}_i \in \mathcal{C} \\ 0 & \text{otherwise} \end{cases}$$

Sparse Tensor

WHY SPARSE TENSOR?

50	34	67	152
67	79	79	154
72	36	39	160
53	29	46	229
48	120	172	232

Dai et al., ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes, CVPR'17

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

2.5cm voxel : 98%

CONTINUOUS VS. DISCRETE

Point Cloud

- No quantization error
 Qua
- No bound on the number of neighbors
- No random access
- Irregular density
- No hierarchy, or heuristic sampling

Sparse Tensor

- Quantization error
 - Negligible: 1cm for 5m x 5m ScanNet rooms
- Bound on the number of neighbors
- Easy random access
- Hierarchy is deterministic and straight forward

MINKOWSKI ENGINE

Discriminative Networks

Classification 3D Object to Semantic Label

Semantic Segmentation 3D Scene to Semantic Labels

Benjamin Graham, Sparse 3D convolutional neural networks, BMVC'15 Chris Choy, JunYoung Gwak, Silvio Savarese, 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

💿 NVIDIA.

MINKOWSKI ENGINE

Generation Networks with Generalized Convoluion [Choy et al. CVPR'19]

Single-shot Detection 3D Scene to Axis Aligned Bounding Boxes

Reconstruction

Feature Vec. to 3D Object

Completion

Chris Choy, JunYoung Gwak, Silvio Savarese, 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

Conv6

14

NVIDIA.

3D PERCEPTION WITH SPARSE TENSORS Papers to present

- Choy et al., 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19
- Chris Choy, Jaesik Park, Vladlen Koltun, Fully Convolutional Geometric Features, ICCV'19
- Chris Choy, Wei Dong, Vladlen Koltun, **Deep Global Registration**, CVPR'20 Oral
- Choy et al., High-dimensional Convolutional Networks for Geometric Pattern Recognition, CVPR'20 Oral
- Gwak et al., Generative Sparse Detection Networks for 3D Single-shot Object Detection, preprint 2020

4D SEMANTIC SEGMENTATION

Choy et al., 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

SEMANTIC SEGMENTATION

- Partition 3D scans or data into semantic parts
- Label each voxel or 3D point as one of semantic labels

Dai et al., ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes, CVPR'17 Chris Choy, JunYoung Gwak, Silvio Savarese, 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

NVIDIA

MINKOWSKI NETWORKS

First very deep convolutional neural networks achieved SOTA on ScanNet (CVPR'19 2018 Nov)

42-layer deep neural networks for semantic segmentation

- Reuse network architectures found from years of research in 2D
 - Residual Network
 U-Net, or Pyramid Network
 AD MinkNet18
 ResNet18

Chris Choy, JunYoung Gwak, Silvio Savarese, 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19

20

🕺 NVIDIA.

SCANNET 3D SEMANTIC SEGMENTATION BENCHMARK

ScanNet 3D Semantic Segmentation mIoU (Nov/2018)

4D SPATIO-TEMPORAL SPACE 3D space + time as a single entity (Minkowski space)

4D CONVNET OVER SPACE AND TIME

3D space + time as a single entity (Minkowski space)

NVIDIA

3D FEATURE MATCHING

Chris Choy, Jaesik Park, Vladlen Koltun, **Fully Convolutional Geometric Features**, ICCV'19

MULTI-VIEW 3D RECONSTRUCTION Pipelines when no camera extrinsics are given

PRIOR WORKS IN 3D GEOMETRIC FEATURES

Sliding-window-style (crop and extract) features

Hand-designed Features	Lear
Spin Image, USC, SHOT, PFH, FPFH	3DMatch, Caps

- Extract a small 3D patch
 - Limits context, receptive field
 - Features extracted separately
- Preprocessing
 - Normal, Signed Distance Function, curvatures

rned Features

CGF, PointNet, PPF, FoldNet, PPFFold, suleNet, DirectReg, 3DSmoothNet

FULLY CONVOLUTIONAL METRIC LEARNING

Dense geometric feature learning with metric-learning loss

Choy et al., Universal Correspondence Network, NIPS'16 Choy et al., Fully Convolutional Geometric Features, ICCV'19 Choy and Lee, **Open UCN**, github'20

- The first fully convolutional metric learning
- Convolutional Spatial Transformer
 - Precursor of deformable convolution

SPARSE FULLY CONVOLUTIONAL METRIC LEARNING

Fully Convolutional Networks on Sparse Tensorized Input

- Dense Image \rightarrow Spatially Sparse Tensor
- Residual Network + U-Net + Minkowski Engine
 - MinkowskiUNet

Choy et al., Universal Correspondence Network, NIPS'16 Choy et al., Fully Convolutional Geometric Features, ICCV'19

FULLY CONVOLUTIONAL HARDEST CONTRASTIVE LOSS Fully Convolutional Networks on Sparse Tensorized Input

Choy et al., Universal Correspondence Network, NIPS'16 Choy et al., Fully Convolutional Geometric Features, ICCV'19

FULLY CONVOLUTIONAL HARDEST CONTRASTIVE LOSS

	Feature Match Rec
Contrastive (norm.)	0.8493
Triplet	0.7903
Triplet (norm.)	0.6935
Hardest-Contrastive	0.9344

FULLY CONVOLUTIONAL GEOMETRIC FEATURES Registration Results on the 3D Match Benchmark

Chris Choy, Jaesik Park, Vladlen Koltun, Fully Convolutional Geometric Features, ICCV'19

10⁵

3D GLOBAL REGISTRATION

Choy et al., **Deep Global Registration**, CVPR'20 Oral Choy et al., **High-dimensional Convolutional Networks for Geometric Pattern Recognition**, CVPR'20 Oral

MULTI-VIEW 3D RECONSTRUCTION Pipelines when no camera extrinsics are given

6D CONVOLUTIONAL NETWORK

 (x_1, y_1, z_1)

 (x_2, y_2, z_2)

 (x_2, y_2, z_2) (x_1, y_1, z_1)

NVIDIA.

 (x_2, y_2, z_2) (x_1, y_1, z_1)

$$\begin{bmatrix} r_{00} & r_{01} & r_{02} & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ z_2 \end{bmatrix} + t_x = 0 \quad \begin{bmatrix} r_{10} & r_{11} & r_{12} & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ y_1 \\ y_1 \\ y_2 \\ z_2 \end{bmatrix} + t_x = 0 \quad \begin{bmatrix} r_{10} & r_{11} & r_{12} & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ y_1 \\ z_2 \\ y_2 \\ z_2 \end{bmatrix} + t_y = 0 \quad \begin{bmatrix} r_{20} & r_{21} & r_{22} & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ z_2 \\ y_2 \\ z_2 \end{bmatrix} + t_z = 0$$

Intersection of three hyperplanes

$$R \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + \mathbf{t} \approx \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$$

Inliers: 3D subspace in 6D

 $\begin{vmatrix} x_1 \\ y_1 \end{vmatrix} + \mathbf{t} \neq \begin{vmatrix} x_2 \\ y_2 \end{vmatrix}$ z_2 z_1

Outliers: Noise

44

Finding Inlier = Segmentation

6D CONVOLUTIONAL NETWORK

REGISTRATION PIPELINE

 (x_1, y_1, z_1) $\left(\begin{bmatrix} x_1^i \end{bmatrix} \begin{bmatrix} x_2^i \end{bmatrix} \right)^2$

$$\underset{R,\mathbf{t}}{\operatorname{argmin}} \sum_{i} \left(R \begin{bmatrix} x_{1}^{i} \\ y_{1}^{i} \\ z_{1}^{i} \end{bmatrix} + \mathbf{t} - \begin{bmatrix} x_{2}^{i} \\ y_{2}^{i} \\ z_{2}^{i} \end{bmatrix} \right)$$

Procrustes Analysis

 (x_1, y_1, z_1)

 (x_2, y_2, z_2)

3D+3D coord input

$$+\mathbf{t} - egin{bmatrix} x_2^i \ y_2^i \ z_2^i \end{bmatrix} \end{pmatrix}^2$$

$$\underset{R,\mathbf{t}}{\operatorname{argmin}} \sum_{i} w_{i} \left(R \begin{bmatrix} x_{1}^{i} \\ y_{1}^{i} \\ z_{1}^{i} \end{bmatrix} + \mathbf{t} - \right)$$

Theorem 1 : The R and t that minimize the squared error $\sum_i u$

are
$$\hat{\boldsymbol{t}} = (X_2 - RX_1)W\boldsymbol{1}$$
 and $\hat{R} = USV^T$ where $U\Sigma V^T = SVD(\Sigma)$
 $K = I - \sqrt{\tilde{\boldsymbol{w}}}\sqrt{\tilde{\boldsymbol{w}}}^T$, and $S = diag(1, \cdots, 1, det(U)det(V)).$

$$\hat{R} = USV^T$$
$$\hat{\mathbf{t}} = (X_2 - \hat{R}X_1)$$

$$\begin{bmatrix} x_2^i \\ y_2^i \\ z_2^i \end{bmatrix} \right)^2$$

$$v_{i} \left(R \begin{bmatrix} x_{1}^{i} \\ y_{1}^{i} \\ z_{1}^{i} \end{bmatrix} + t - \begin{bmatrix} x_{2}^{i} \\ y_{2}^{i} \\ z_{2}^{i} \end{bmatrix} \right)^{2}$$

$$v_{i} \sum = X_{2}KWKX_{1}^{T},$$

W1

$\hat{R} = USV^T \qquad \hat{\mathbf{t}} = (X_2$

Weighted Procrustes Differentiable w.r.t W, inlier probability

$\hat{\mathbf{t}} = (X_2 - \hat{R}X_1)W\mathbf{1}$

$\hat{R} = USV^T$

Weighted Procrustes Differentiable w.r.t W, inlier probability

- 1. Complexity linear to num. correspondences
 - High-resolution correspondences \bullet
- 2. Scans with partial overlap
 - No 1-1 mapping since weight can be 0 \bullet

$\hat{\mathbf{t}} = (X_2 - \hat{R}X_1)W\mathbf{1}$

$\hat{R} = USV^T$

Weighted Procrustes Differentiable w.r.t W, inlier probability

1. Complexity linear to num. correspondences

High-resolution correspondences •

2. Scans with partial overlap

No 1-1 mapping since weight can be 0 •

$\hat{\mathbf{t}} = (X_2 - \hat{R}X_1)W\mathbf{1}$

REGISTRATION PIPELINE

Fine-tuning

$$\underset{R,\mathbf{t}}{\operatorname{argmin}} \sum_{i} w_{i} L \left(R \begin{bmatrix} x_{1}^{i} \\ y_{1}^{i} \\ z_{1}^{i} \end{bmatrix} + \mathbf{t}, \right.$$

- Gradient-based optimization
- Continuous 6D representation [Zhou et al.]

$$\underset{\mathbf{a},\mathbf{t}}{\operatorname{argmin}} \sum_{i} w_{i} L \left(f(\mathbf{a}) \begin{bmatrix} x_{1}^{i} \\ y_{1}^{i} \\ z_{1}^{i} \end{bmatrix} + \frac{1}{2} \right)$$

Zhou et al., On the Continuity of Rotation Representations in Neural Networks, CVPR'19

$f: \mathbb{R}^6 \to \mathrm{SO}(3)$

 $\mathbf{t}, egin{array}{c|c} x_2^i \ y_2^i \ z_2^i \ \end{array}
ight)$

Invidia.

TRAINED AND TESTED ON 3DMATCH

3D REGISTRATION: DEEP GLOBAL REGISTRATION Learning the Structure of the correspondences

Chris Choy, JunYoung Gwak, Silvio Savarese, 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19 Chris Choy, Wei Dong, Vladlen Koltun, Deep Global Registration, CVPR'20 Oral

GENERATIVE SPARSE DETECTION NETWORKS

Gwak et al., Generative Sparse Detection Networks for 3D Single-shot Object Detection, preprint 2020

SINGLE SHOT OBJECT DETECTION: ANCHORS

3D SCANS

GENERATION NETWORKS Generating Geometry / Sparsity Pattern

Full Reconstruction

Feature Vec. to 3D Object

Scene Completion Dai et al. Sparse Generative NN

Choy et al., 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks, CVPR'19 Dai et al., SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans, arXiv'20

80

NVIDIA.

GENERATING BOUNDING BOX ANCHORS

JunYoung Gwak, Chris Choy, Silvio Savarese, Generative Sparse Detection Networks for 3D Single-shot Object Detection, preprint 2020

Generative Sparse Detection Network

- - : Transposed Convolution

Method	Single S	hot mAP@0.2	25 mAP@0.5
DSS [28, 13]	×	15.2	6.8
MRCNN 2D-3D [11, 13]	×	17.3	10.5
F-PointNet [25]	×	19.8	10.8
GSPN [37, 24]	×	30.6	17.7
3D-SIS [13]	 ✓ 	25.4	14.6
3D-SIS [13] + 5 views	 Image: A second s	40.2	22.5
VoteNet [24]	×	58.6	33.5
GSDN (Ours)		62.8	34.8

84

🕺 NVIDIA.

G.T.

Ours

G.T.

Ours

VIDIA.

CONCLUSION

CONCLUSION

- A sparse tensor is a powerful representation : discretization has more pros than cons
- Combining discrete representations with continuous representations
 - LIDAR pointclouds, RGB-D scans, voxel-downsampled
 - Hierarchical representation by downsampling points
 - Lose the resolution anyway
 - Discrete for intermediate layers, continuous for the first and last

Benjamin Graham, Sparse 3D convolutional neural networks, BMVC'15 Dai et al., SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans, arXiv'20 Peng et al., Convolutional Occupancy Networks, arXiv'20

NVIDIA.

MINKOWSKI ENGINE

- Support for various backends
 - GPU/CPU hashtable

